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| ABSTRACT

\:9 For a system of differentiable convex inequalities, a new bound
is given for the absolute error in an infeasible point in terms of the
absolute residual. By using this bound a condition number is defined
for the system of inequalities which gives a bound for the relative

error in an infeasible point in terms of the relative residual. -
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SIGNIFICANCE AND EXPLANATION

Many important problems can be reduced to finding a feasible point
to a system of inequalities. When a feasible point is not readily
available or when only an "approximate" feasible point is available, one
is interested in determining the error in a given infeasible point. In

this work we show how such error can be bounded.
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A CONDITION NUMBER FOR DIFFERENTIABLE CONVEX INEQUALITIES

0. L. Mangasarian

, 1. Introduction

For a system of linear equalities
= (1.1) ‘ Ax = b

_ where A 1is a given nxn real nonsingular matrix énd b is a given
| nonzero vector in the n-dimensional real Euclidean space R", the norm
of the inverse "A"” and the condition number HA"lI [IA]} provide
gg? the following useful bounds for the absolute error ||x-X|| in terms of
??; the residual ||Ax-b]|, and for the relative error JH?%%HL in terms of the

relative residual Aﬁ;b [1,6]

- -1
(1.2) lIx=x| < [A""1l ||Ax-b]|

(1.3) llr’l‘_"r‘[llf- IR Axb-b

Here, x is any point in R", X {s the exact solution Ao and el

xil

denotes a vector norm on R" or its subordinate matrix norm [1,6]. The

condition number HA"Il [lA]], which depends on the specific norm i
employed and which is never less than 1, provides a very useful stability ‘
measure for the system (1.1). It is the purpose of this work to obtain a

corresponding number for the system of inequalities

Sponsored by the United States Army under Contract No. DAAG29-80-C-0041,
This material is based on work supported by National Science Foundation
Grant MCS-8200632.




(1.4) g(x) < 0

where g: R" + R™ is differentiable and convex on R". The key to
obtaining a condition number for (1.4) is the definition of a quantity
that plays the same role as that of HA']H for (1.1) and which would
provide an error bound similar to (1.2). In [2] Hoffman extended the
bound (1.2) to a system of linear inequalities, and in [5] a new explicit
expression was derived for that bound for a system of linear inequalities
and equalities. In [7] Robinson extended the bound (1.2) to a system of
convex inequalities that define a bounded feasible region with a nonempty
interior. In Section 2 of this paper we shall extend the bound (1.2) to

a system of differentiable convex inequalities which satisfy a constraint

qualification, but without any boundedness assumption on the feasible
region. The diameter of the bounded feasible region which appears 1in-
early in Robinson's bound [7, equation (4)] does not appear in our bound
(2.3). In Section 3 of this paper we employ the results of Section 2 to
obtain a condition number for (1.4) and thereby extend the relative error
bound (1.3) to a system of differentiable convex inequalities satisfying
a constraint qualification.

We briefly describe now the notation and some of the basic concepts
used in this work. For a vector x in the n-dimensional real Euclidean
space R", |x| and x, will denote the vectors in R" with components
|x|i = |x1| and (x,); = max {x;, 0}, i=1,2,...,n, respectively. For
a norm ||x||B on R", ”xlle* will denote the dual norm on R", that

Hxlle* = xy, where xy denotes the scalar product. The

max
”.Y“B"I

generalized Cauchy-Schwarz inequality |xy| < ||x||8 Hylle*, for x
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and y in R", follows immediately from this definition of the dual

n —
nom. For 1<p,q<> and %+%= 1 the p-norm ( Z] Ix“l':')p and
i=

the q-norm are dual norms on R" [3]. If I-llg is a norm on R",

we shall, with a slight abuse of notatfon, let ||-||8 also denote the
corresponding norm on R® for m¢ n. For an mxn real matrix A, Ai
denotes the 1th row and A.j denotes the jth column, while ||A\||B denotes
the matrix norm [1,6] subordinate to the vector norm ||-||B. that is

lallg = | mlTx : lIAx|lg. The consistency condition ||Ax|jg < JIAllg lIxllg
x|l .=
B

follows immediately from this definition of a matrix norm. We shall also
use ||*|| to denote an arbitrary vector norm and its subordinate matrix
norm. A vector norm |[<]| on R" {s said to be monotonic if and only if
[x;] & lyg[s i=1,...0n, implies that [(x{| < [[y]l (6]. The p-norms
1<p <=, areall monotonic norms [6]. A vector of ones in any real
Euclidean space will be denoted by e. For a differentiable function

g: R" + A", Vg(x) will denote the mxn Jacobian matrix evaluated at the
point x in R". For a subset I < {1,2,...,m}, gl(x) or giel(") will
denote those components of gi(x) such that ielI. Similarly Vgl(x)
will denote the rows (\7g(x))i of Vg(x) such that iel.

N




2. An Absolute Error Bound for Differentiable Cohvex Inequalities

We shall use the approach of [5] to obtain a bound (2.3) for the
absolute error Hx-p(x)"y, where x 1is any infeasible point for (1.4)
and p(x) is some feasible point for (1.4), in terms of the absolute
residual ||9(*)+l|3- The constant ug ~relating these two quantities
plays a similar role for the differentiable convex inequalities (1.4) as

“A']H does for the linear system (1.1).

2.1 Theorem Let g be a differentiable convex function from R" into

R", let S° and S defined by
(2.1) s°:= {x|g(x)<0, xeR"} < S:= {x|g(x)<0, xeR"}

be nonempty and let g satisfy the following asymptotic constraint
qualification

For each sequence of points {xi}cS such that gl(xi) =0
and VgI(xi)fO for 1c{1,2,...,m}, each accumulation point

(2.2) 551 of the sequence {VgI(xi)} when the latter is bounded, and
) of the subsequence {Vgl(xib/HVgI(xi)ll} when {Vgl(xi)} is

unbounded, satisfies

3512 >0 for some z¢R"
Then for each x in RM there exists a point p(x) in S such that

(2.3) lIx-p(x)l, < wgy Na(x),llg

where uBY is a constant independent of x and defined by
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(2.4)  ug = oy, z‘:;{llwlls, peS, w20, wg(p)=0, |[wvg(p)l,=1}
where ”'“3* is the dual norm to ||~||B and o, f1s the positive

constant relating the y-norm and «-norm by

||z||Y Lo llzl|, for a1l zeR"

Proof We note first that Mgy 35 defined by (2.4) is finite under the
asymptotic constraint qualification (2.2). For if not then there exists
a sequence {(wi.pi)} such that w' # 0 and ||wi || + =, ples, w >0,

i >0, a(p’) <0,

wiglp!) = 0 and Iling(pi)ll .= 1. Since wiglpl) =0, w
it follows that gl(pi) = 0 and ";ll = 0 for some fixed nonempty subset
I of {1,...,m} and for a subsequénce {(wi,pi)}id_ of {(wi.pi)}.
Hence {llw}II Hel = ™ llw}VgI(pi)”kL =1 and Vgl(pi)'f 0. For the
case when {Vgl(pi)}iGL is bounded the subsequences {\7gl(pi)}ieL and
{"}/""}"}ieL have respective accumulation points V_gI and w;. When
P {\'Igl(pi)}ieL {s unbounded the subsequences {Vgl(pi)/IIVQI(pi)II e and
' {w}/llwlll }; have respective accumulation points \'I_gI and '.'I‘ In

N i 1 i
f:::; either case, since |[lw;vg;(p )|, =1 and {flwill};  + = it follows

that
W vg, = 0, W 2 0, [lW,[l =1 |

This however contradicts the asymptotic constraint qualification (2.2)

that \'7-g'Iz>0 for some z in R". Consequently uBY is finite.
Now for any x 1in R" not in S define p(x) as the projection

of x on S using the =-norm. Hence p(x) and some &(x) > 0 solve

the following convex programming problem
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(2.5) mig{s -eb<p-x<es, g(p)<0, peR", SeR}
P

Note that since S° {s nonempty by assumption, the interior of the
feasible region of (2.5) is also nonempty and hence p(x), 8(x) and some
u(x), v(x) and w(x) satisfy the following Karush-Kuhn-Tucker conditions
[4] for (2.5) where the explicit dependence of p, §, u, v and w on x
has been dropped for simplicity

1 - elutv) = 0, u - v + wig(p) = 0, (u,v,w) 20

-e§<p-x<es, g(p) <0

wg(p) = O, uJ(p-X-ec)J s 0, vj(-es-p+x)j =0, j=1,...,n

From the last two equalities it follows that ujvj =0 for J=1,...,n,

because

(D-x-es)J + (-e6-p+x)j =-25<0
Consequently
(2.6) peS, wa(p) = 0, w2 0, [[wig(p)f|, =1
Hence

0 < |[x-pll, = ¢
= § + u(p-x-e§) + v(-ed-p+x) + wg(p)
= x(v-u) + wg(p) - wvg(p)p
= wig(p)x + wg(p) - wvg(p)p
<wg(x)  (By convexity of g and w > 0)

< wo(x),




.......................
........................

.y -

< |lwl| g* llg(x)+l|8 (By Canchy-Schwarz inequality)

u
Saﬁ ||9(X)+||B (By (2.4) and (2.6))

Hence

lIx-plly < oy lIx-pllg < ugy lalx),lig 0

2.2 Remark The asymptotic constraint qualification (2.2) 1s merely used
as a sufficient condition for the finiteness of gy as defined by (2.4).
Hence Theorem 2.1 can be stated with the constraint qualification (2.2)
replaced by the assumption that the supremum of (2.4) defining uBY is
finite.

We give now a simple example i1lustrating the above theorem which is
not covered by Robinson's result [7, equation (4)] because the feasible

region is unbounded.

1

X
2.3 Example S:= {XIXeRz, x,2e ', x.';O}.

It is easy to verify that the assdmptions of Theorem 2.1 are satisfied
X
*= 1 - 8 o
with gI(x). e Xos gz(x) X and that

Hpe:® SUP {[[w(|4]peS, w20, wg(p)=0, lwvg(p)|l,=1} = 2

wsp

Consequently for each x in R there exists a p(x) in S such that

lIx-p(x)ll,, < 2[[(e T-xp),

('x] )+

The bound u__ = 2 1is sharp here, for take the sequence of points

X = -t, X ® 1 -2t with t a nonnegative number converging to zero.

n‘-'.".“..',,v""-... .
A oadaiatalat ey, o N




Then

Pepball,  f-to-2ell, 2t
otx), ll,  etas2t  e"treat

which approaches 2 as t approaches 0.
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3. A Relative Error Bound for Differentiable Convex Inequalities

We extend now the relative error bound (1.3) to convex differentiable
inequalities by using the error bound (2.3). We will again use the
approach of [5] and will need the following simple lemma established

there.

3.1 Lemma [5, Lemma 2] Let ||-||B be a monotonic norm on R™ and let
a, b bein R™. Then a < b implies that lI€a),llg < bl

The following is a direct consequence of the above lemma.

3.2 Lemma Let g: R" + R™ be differentiable and convex on R" and let

ll-llB be a monotonic norm on R™. Then

llg(0),llg < llvg(0dpllg for glp) <0

Proof By the convexity of g, 0 > g(p) > g(0) + vg(0)p. Hence applying
Lemma 3.1 to g(0) < -Vg(0)p we obtain the desired inequality. a

3.3 Theorem (Condition number bound) Let the assumptions of Theorem 2.1
hold, let g(0) # 0 and let Il-||B be a monotonic norm on R™. Then

for each x in R" there exists a p(x) in S such that

|| x=-p(x) || a(x), i
(3.1) '——'—Bf. “BB HVg(O)IIB — 8
T TGP

where g is defined by (2.4), and uBBHVg(O)HB defines the condition
number of (1.4).

Proof For each x in R" there exists a p(x) in S such that

B S T U e T e . . . . . ]



lx-ptxdllg oo, lig Natx,llg
Il " # Tptll, Nlato),l,

(By Theorem 2.1)

livg(0)p(x)1lg Notx),llg

i (By Lemma 3.2)
% letallg  lato,lig

llatx), |
< Hgg 198(0) § ——tB
8 s g a(0), Il

For Example 2.3, it is easy to verify that | vg(0)||_ =2 and

hence the condition number for the example, using the «-norm, is:
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